On rank jumps on families of elliptic curves

Cecília Salgado, Rijksuniversiteit Groningen

The new results are from 3 distinct collaborations with Dan Loughran (Bath- UK), Renato Dias (UFRJ) and Hector Pasten (PUC-Chile)

- Motivation
- Definitions and examples
- The problem and different methods
- More on the geometric method: Results

Ranks of elliptic curves Let k be a number field and E/k an elliptic curve. $E: y^2 = x^3 + ax + b$, with $a, b \in k$. Mordell-Weil Theorem: $E(k) \simeq \mathbb{Z}^{r(a,b)} \oplus Tors_{a,b}$. Consider a family of elliptic curves: $(\star) \quad E_t: y^2 = x^3 + a(t)x + b(t), \text{ with } a(t), b(t) \in k[t].$ For $t \in k$ such that $\Delta(t) \neq 0$, we have $E_t(k) \simeq \mathbb{Z}^{r_t} \oplus Tors_t$. **Natural Question**: How does r_t behave as t varies? **TODAY:** We'll use surfaces to deal with this question.

Elliptic surface

A smooth projective surface S is called an *elliptic surface* if $\exists \pi : S \rightarrow B, s . t$.

- $\pi^{-1}(t)$ is a smooth curve of genus 1, for almost all $t \in B$
- $\exists \sigma : B \to S$, a section

We suppose moreover that

- there is at least one singular fiber
- π is relatively minimal

Elliptic surface

A smooth projective surface S is called an *elliptic surface* if $\exists \pi : S \rightarrow B, s . t$.

- $\pi^{-1}(t)$ is a smooth curve of genus 1, for almost all $t \in B$
- $\exists \sigma : B \to S$, a section

We suppose moreover that

- there is at least one singular fiber
- π is relatively minimal

$Y^2 = X^3 + aX + b; a, b \in k(B)$

In orange: a multisection

Why do we care? Elliptic surfaces appear in many places

- Shioda-Tate: $NS(S)/T \simeq MW(\pi)$
- Zariski density/potential density (Bogomolov-Tschinkel, S.- van Luijk)
- k-unirationality of conic bundles (Kollár-Mella)
- Dense sphere packings (Shioda, Elkies)
- Error correcting codes (S. Várilly-Alvarado Voloch)
- High rank elliptic curves over \mathbb{Q} (Elkies record: 28)

An example **Rational elliptic surfaces**

Consider F, G two plane cubics. Then

 $F \cap G = 9$ points counted with multiplicities and we have

 $(x:y:z) \mapsto (F(x,y,z):G(x,y,z))$

Arithmetic of elliptic surfaces Given a number field k

The Mordell-Weil theorem tells us that:

- For the special fibers $E_t := \pi^{-1}(t)$ with $t \in B(k)$:
 - $E_t(k) = \mathbb{Z}^{r_t} \oplus \operatorname{Tors}_t$.
- For the generic fiber:

fiber E_r and r denotes the rank of the generic fiber.

- $\mathscr{C}_n(k(B)) = \mathbb{Z}^r \oplus \text{Tors.}$
- From now on: rank = Mordell-Weil rank, and r_t denotes the rank of the special

Ranks of elliptic curves in families

 $(\star) \quad E_t: y^2 = x^3 + a(t)x + b(t), \text{ with } a(t), b(t) \in k[t].$

Natural Question: How does r_t behave as t varies? $#\mathcal{G}_{i}?$

So $i < r \Rightarrow \# \mathscr{G}_i < \infty$.

What about \mathscr{G}_i , for $i \geq r$?

We'll look at $\mathscr{F}_{r+i} := \{t \in \mathbb{P}^1(k);$

- Given $i \in \mathbb{N}$ and $\mathscr{G}_i := \{t \in \mathbb{P}^1(k); r_t = i\} \subset \mathbb{P}^1(k)$, what can we say about
- **Néron-Silverman's Specialization Theorem:** $r_t \ge r$ for all but finitely many t.

$$r_t \geq r+i$$
.

Ranks of elliptic curves in families

Néron and Silverman Specialization Theorems tell us that:

More precisely:

Néron: outside a THIN set.

Silverman: outside a set of bounded height.

Can we say more?

When $r_t > r$ we say that the **rank jumps**.

TODAY: Does the rank jump? Where and how large is the jump?

- $r_{t} \geq r$, for all but finitely many $t \in B(k)$.

Nethods

- Root Numbers
- Height Theory
- Base change

Root numbers

- equation:
- $\tilde{L}(E,s) = W(E) \tilde{L}(E,2-s).$
- Parity conjecture: $W(E) = (-1)^{\operatorname{rank}(E)}$.
- is determined by its root number.
- Variation of the root number \Rightarrow Rank jump
- jump.

Given an elliptic curve E/k. The root number of E is the sign of the functional

In other words: The parity of the rank of an elliptic curve over a number field

Constant root number with different "parity" from the generic rank \Rightarrow Rank

Variation of root numbers in families

Desjardins)

Ex: $Y^2 = X^3 - (1 + T^4)X$, $W(E_t) = -1$, $\forall t$ and hence $\#\mathscr{F}_{r+1} = \infty$.

Non-isotrivial families

Expected: Both +1 and -1 occur infinitely often.

the coefficients.

- Isotrivial families (Rohrlich, Gouvêa, Mazur, Várilly-Alvarado, Dokchitser^2,

- Holds under major conjecture and known under hypothesis on the degree of

Height theory approach

Definition: $P \in E_t(\mathbb{Q})$ is a division point if $\exists n \in \mathbb{N}$ s.t. $n \cdot P \in \text{Sec}(\pi)(\mathbb{Q})$.

Let $U \subset S$ be a Zariski open. We denote by U_{div} the set of division points in U.

(of bounded height).

There is $\delta > 0$ s.t. $\forall U \subset S$

 $N(U(\mathbb{Q}), H_D, B) \gg B^{\delta}$ and $N(U_{div}(\mathbb{Q}), H_D, B) \ll B^{\delta/2}$

Corollary (Billard): $\#\mathscr{F}_{r+1} = \infty$.

- Idea: Count division points of bounded height on fibers and compare with total count
- Billard (2000): Let S be a Q-rational elliptic surface and $D \subset S$ an ample divisor.

Geometric approach: base change

- π_C is an elliptic fibration
- Sections of π induce sections of π_C
- New section $\sigma_C : C \to S \times_B C$
- Hence $\operatorname{rk}(S_C(k(C))) \ge r = \operatorname{rk}(S(k(B)))$
- If σ_C independent of sections of π then:
- For $t \in \varphi(C(k)) \subset B(k)$ we have $r_t \geq r+1$.
- Interesting when $\#C(k) = \infty$ because then we get rank jump on an infinite set!

Rank jumps by base changing

• S. (2011): If S is k-unirational then

 $\#\mathcal{F}_{r+1} = \infty$.

• S. (2011) If moreover S has two conic bundle structures then

What about the quality of these sets?

- $= \infty$.

Quality - Expectation

Silverman conjectured in the 80's that

 $r_t = r \text{ or } r + 1,$

for 100% of the fibers when ordered by height

Infinite set

Quality - Expectation

• Silverman conjectured in the 80's that:

 $r_t = r \text{ or } r + 1,$

for 100% of the fibers when ordered by height

Infinite set

Thin Sets

Given an algebraic variety V over k. A subset $T \in V(k)$ is said to be:

- Of type 1 if it is contained in a proper Zariski closed subset.
- Of type 2 if is contained in the image of the k-points of a dominant morphism of degree at least 2

 $\phi: W \to V, \text{ so } T \subset \phi(W(k)) \subset V(k).$

V is said to satisfy the HILBERT PROPERTY over k, if V(k) is not thin.

- T is called THIN if it is contained in a finite union of subsets of types 1 and 2.

A. Over number fields, \mathbb{P}^n satisfies the Hilbert Property, for all n.

B. The set of \square 's in a number field is THIN. Indeed, they lie in the image of the degree 2 map $t \mapsto t^2$.

e

Our contribution on rational elliptic surfaces

surface such that π admits a bisection of arithmetic genus zero then

$$\mathcal{F}_{r+1} = \{t \in \mathbb{P}^1($$

OR admits a 2-torsion section defined over k, then

$$\mathcal{F}_{r+2} = \{t \in \mathbb{P}^1(k$$

Thm. A (Loughran, S. 2019): Let $\pi : S \to \mathbb{P}^1$ be a geometrically rational elliptic

 $(k); r_{t} \geq r + 1$ is not thin.

Thm. B (Loughran, S. 2019): If moreover π has at most one non-reduced fiber

k); $r_{t} \ge r + 2$ is not thin.

Our contribution on rational elliptic surfaces

- **Thm. C (Dias, S. 2021):** Let $\pi : S \to \mathbb{P}^1$ be a geometrically rational elliptic surface such that one of the following holds:
- i) It has a non-reduced fibre of type II^*
- ii) It has a non-reduced fibre of type IV^* , I_1^* or I_0^* and a reducible reduced singular fibre;
- then,

*,
$$III^*$$
 or I_n^* , for $2 \le n \le 4$;

$\mathscr{F}_{r+3} = \{t \in \mathbb{P}^1(k); r_t \ge r+3\}$ is not thin.

Our contribution on K3 surfaces

without non-reduced fibers. Suppose that there is a different elliptic fibration $\nu: S \to \mathbb{P}^1$ over k. Then the following are equivalent:

i) X(k) is Zariski dense in X;

$$ii) \# \mathscr{F}_{\pi,r+1} = \infty;$$

iii) $\mathcal{F}_{\pi,r+1}$ is not thin in $\mathbb{P}^1(k)$

Thm. D (Pasten, S. 2022): Let $\pi : S \to \mathbb{P}^1$ be a non-isotrivial elliptic K3 surface

Proof of Theorem D: Main tools

I) We consider a base change by a multisection;

II) Check that the multisection induces a \mathbb{Z} -linearly independent section;

III) Check that the subset of the base of the fibration where the rank jumps is not thin;

Proof of Theorem D: Main tools

I) We consider a base change by a multisection;

Take a fiber of the other elliptic fibration.

II) Check that the multisection induces a \mathbb{Z} -linearly independent section;

Check that it is <u>Saliently ramified</u>.

not thin;

Use the fact that we have infinitely many!

III) Check that the subset of the base of the fibration where the rank jumps is

How does one show that a subset \mathscr{B} of the line is NOT THIN?

We have to check that given a finite number of arbitrary covers

there exists $t \in (\mathbb{P}^1(k) \cap \mathscr{B}) \setminus (\bigcup_i \phi_i(Y_i(k)))$.

- $\phi_i: Y_i \to \mathbb{P}^1, i = 1, \cdots, n$

Avoiding the covers

Given a finite number of covers $\psi_i : Y_i \to B$ we have to find $P \in C(k)$ such that $\varphi(P) \notin \bigcup \psi_i(Y_i(k))$. If $Y_i \times_B C$ is an integral curve then $Y_i \times_R C$ Hurwitz's formula tells us that $g(Y_i \times_R C') \ge 2$. By Faltings' theorem, $(Y_i \times_B C)(k)$ is finite. Y_i Since $\operatorname{rk}(G_{S}(k)) > 0 \exists P \in C(k) \setminus \tilde{\psi}_{i}((Y_{i} \times_{R} C)(k))$, i.e., $\varphi(P) \in B \setminus (\bigcup_i \psi_i(Y_i(k))).$

 $Y_i \times_R C$ is integral. Indeed, we can take T as the set of branch points of ψ_i 's.

Proof of Theorem D: Main tools

I) We consider a base change by a multisection;

Take a fiber of the other elliptic fibration.

Check that it is <u>Saliently ramified</u>.

not thin;

Use the fact that we have infinitely many!

II) Check that the multisection induces a \mathbb{Z} -linearly independent section;

III) Check that the subset of the base of the fibration where the rank jumps is

Thank you!